HYDRODYNAMIC ANALOGIES OF THE PHENOMENA
OF IGNITION AND EXTINCTION

A. G. Merzhanov and A. M. Stolin UDC 532.135

The problem of determining the steady-state dissipative heating of a Newtonian liquid moving
in a round tube of finite length, taking account of the dependence of the viscosity on the tem-
perature, is formulated. The possibility of a jumpwise transition from low-temperature flow
conditions with small mass flow rates to high-temperature flow conditions with large mass
flow rates, and the reverse with a gradual change in the pressure drop, is established. This
phenomenon is brought about by hydrodynamic thermal ignition and extinction; an analytical
description of it is given.

1. The dissipative evolution of heat with a nonlinear dependence of the viscosity on the temperature
can lead to the development of a hydrodynamic thermal explosion. A theoretical justification of this phe-
nomenon for Couette flow, with a time-invariable shear stress at a movable boundary was obtained in [1]
and an experimental confirmation in [2]. A hydrodynamic thermal explosion was predicted for the first
time for a pressurized type of flow [3]. With the solution of the nonisothermal problem of the flow of a vis-
cous liquid in a tube of infinite length under the action of a given pressure gradient, in [3] as well as in [4-6],
there was proved the existence of a critical value of the pressure gradient, above which there is no steady-
state solution of the problem. It is necessary to bear in mind a certain idealization of the above statement
of the problem, consisting in the consideration of a tube of infinite length, and in the assignment, as a start-
ing parameter, of the pressure gradient whose value is usually sought. In the case of a tube of finite
length, for time-invariable boundary conditions, steady-state flow conditions always exist [7].

1t is shown in the present articie that, if the thermal initial section and the limited nature of the re-
sidence time of the liquid in the tube are taken into consideration, then the appearance of nonlinearity of
the dissipative function of the heat evolution manifests itself not in the form of a hydrodynamic thermal ex-
plosion, i.c., in an essentially nonsteady-state development of the process with progressive sclf-heating of
the liquid but in the possibility of a sharp jumpwise transition, with a continuous change of the pressure
drop from low-temperature steady-state flow conditions to high-temperature conditions and back; under
these circumstances, the critical conditions for the transitions do not coincide (the hysteresis effect). This
phenomenon belongs to the same class as the phenomena of ignition and extinction in the theory of combus-
tion [8, 9] and inmagnetic hydrodynamics [10-12] due to the nonlinearity of the dependences, respectively,
of the reaction rate and the electrical conductivity on the temperature. The above analogies make it pos-~
sible to use the "zero-dimensional™ method, which has been effectively applied in the theory of combustion
[13] for a theoretical description of the phenomena of hydrodynamic ignition and extinction.

Let us consider the steady-state flow conditions of a viscous incompressible liquid in a round cylin-
drical tube of radius R and length . The flow is due to the pressure drop at the inlet and outlet of the tube

Ap =p(0) —=p(?).
We make the assumption of thermal flow conditions, considerably simplifying the problem. We shall

assume that there is no distribution of the pressure in a cross section of the tube and that the heat trans-
fer along the axis of the tube is not significant.

The first assumption holds with small Biot numbers Bi = «R/A «1, and the second with large Peclet
numbers Pe = Q/(rRa) > 1 (here « is the heat-transfer coefficient; A and @ are the coefficients of thermal
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conductivity and thermal diffusivity of the liquid; Q is the mass flow rate of the liquid in unit time). If the
condition Bi <« 1 is not observed and there is a pressure distribution in the cross section, then we shall use
the concepts of the mean temperature and the effective heat-transfer coefficient o in a way similar to that
used in the problem of a thermal explosion [9]. With application to the given case, an expression for @ is
obtained below (section 4).

With the assumptions made, the heat-balance equation, referred to unit volume of the ligquid under
steady-state conditions, has the form

2 04— g —2r—1)) _ (1.1)

Here c is the heat capacity; p is the density; T, is the temperature of the surrounding medium; g(T) is
the dissipation function. In the case where there is no dissipation of energy [q(T) = 0], from Egq. (1.1) in
(14, 15] a formula is obtained for determining the steady-state heating (cooling) of the liquid moving in the
tube. In the general case, to determine the dissipative evolution of heat, together with Eq. (1.1) it is ncces-
sary to consider the hydrodynamic equations and the rheological equation of the liquid.

To determine the form of g(T) we adopt the following assumptions with respect to the character of the
flow of the liquid:

1) the flow is laminar, one-dimensional, and steady-state, i.e., v = vz is singular and not equal to
zero; the component of the velocity and av/at = 0;

2) in the initial cross section of the tube z = 0, the flow of liquid has a definite laminar velocity pro-
file, corresponding to isothermal flow.

The latter assumption is equivalent to the observance of the conditions J; « [, and [y <] ({{ and [, are,
respectively, the lengths of the sections of hydrodynamic and thermal stabilization) and is practically always
satisfied.

Since the expression for the dissipation function
R
g(T) = S sDrdr

0

(1.2)

(the factor 2/R? is a result of averaging) contains the shear stress o and the deformation rate D, the heat-
balance equation (1.1) must be supplemented by the hydrodynamic equations and a rheologlcal equation con-
necting o and D. For the flow under analysis we have [15]}

- _dp r _dv
= %n=g 7 =% (1.3)

where dp/dz is the pressure gradient. Substituting (1.3) into (1.2), we obtain

Let us consider further the case of a Newtonian liquid
o=u()D (1.5)
with a Reynolds dependence of the viscosity on the temperature
B (T) = pee™ 7 (ng, k = const) (1.6)

Taking account of the boundary condition v(R) = 0, we integrate the expression for the volumetric flow
rate Q in unit time by parts

R R

’ i d
Q=2n5v(r)rdr=—ns dv ridr (1.7)
] 0
Using (1.3) and (1.5), we obtain
. .
T p r?
[}
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tion of continuity, the dissipation heating of the moving liquid
does not change the velocity profile. Since the viscosity de-
pends on the temperature, and the temperature varies only a-

' \ long the length of the tube, there is a pressure drop along the

) tube, determined from (1.8) by the relationship
. . i._p. = _.M e—k(T"To)
) ) a AR (1.9)
P__,._L-— - The relationships for the mass flow rate (1.8) and the
Ag,, 72 A% pressure gradient (1.9) permit representing the expression for
- the dissipation function (1.4) in the form

\ By virtue of the assumption adopted and from the condi-
4

Fig. 1
w _ SwoQ% .
9(1) = gz e (1.10)
The heat-balance Eq. (1.1) taking account of (1.10) ‘is represented in the following manner:
dT 0 " 2
= QL =B grewr-To _ 27 1) (1.11)

Let us consider the case where the temperature of the liquid at the inlet to the tube and the external
medium are equal, i.e.

2=0, T=T, 1.12)

We integrate Eq. (1.9)

810Q

Ap=pO)—p)=—p-\e*T-T0 dz (1.13)

OO

In what follows we shall distinguish two sets of flow conditions: the mass flow rate of the liquid is
given, Q; the pressure drop Ap in a section of the tube with a length  is given. In the first case, to deter~
mine the steady-state dissipative heating, it is sufficient to solve the differential Eq. (1.11), and, in the sec~
ond case, the system of the differential and integral Egs. (1.11) and (1.13).

We bring Egs. (1.11) and (1.13) into dimensionless form. We choose the following dimensionless vari-
ables and parameters:

) ok  AGkpol®
w = coni® ¢, An= Tp-Ap’ B= ey e
0=k(T—Ty), Et=2z/1 (1.14)

Then, the problem under consideration comes down to solution of the equations

1
dg
05 =0%?— B8, An=ow\c® = =
T - vt ' co§ &, t=0, 8=0 L.15)
In what follows we shall leave as dimensionless variables the designations of the dimensional quanti-
ties defining their physical meaning, i.e., wthe mass flow rate; Ar the pressure drop; 6 the temperature; ¢

the longitudinal coordinates; B the heat-transfer coefficient.

2. Let us examine the results of a numerical sglution of the problem (1.15). The dependence of the
steady-state value of the temperature at the outlet from the tube 6(1)= 6; on the pressure drop A® is of
interest. Figure 1 shows a family of such curves, 1-7, corresponding to values of the heat-transfer coef-
ficient B=0, 10, 30, 60, 100, 250, and 500,

With B = 0 (straight line 1), which corresponds to adiabatic flow, we have 8; = 6;° = Ar. This result
can be obtained from Egs. (1.5). As is shown in [7], for an arbitrary value of B with w— «

6, ~08°=An, An=lh e (2.1)

This means that the adiabatic straight line is an asymptote for all the temperature curves.
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With sufficiently small values of B =10, 30 (curves 2, 3), the temperature 6y rises monotonically and
only one set of steady-state conditions is possible. The transition along the temperature curves from the
region of low values of the temperature to the region of high temperatures is effected smoothly. For the
low-temperature section of the curves, where #<1 (physically, this corresponds to the slow flow of a low-
viscosity liquid), the dependence of the dissipative heat source on the temperature can be neglected

g (0) = w%® =~ w? = const (2.2)
With condition (2.2), the solution of Egs. (1.15) has the form
8, = An®B-' (1 — ¢ B2%), @ = An (2.3)

In the high-temperature region, where 6> 1, the adiabatic solution (2.1) is a good approximation.

With certain values of the parameters (B = Bx =60, AT = AT+ = 5.65), curve 6 rises upwards almost
vertically.

With a further increase in the value of B the temperature curves 5, 6, 7 (B = 100, 250, 500) take on an
S-shaped form. For the discussion, we select the curve 6, corresponding to the value B = 250. Three
branches can be distinguished on the curve: a lower low-temperature branch up to the point (Amy, 84), cor-
responding to almost isothermal flow, and intermediate and upper branches beyond the point (Am_, 6_), cor-
responding to almost adiabatic flow conditions. If the gradually increasing pressure drop A7 moves along
the temperature curve away from the region of low temperatures, then the steady-state heating passes
jumpwise from low values to high values. The reverse transition from large degrees of heating to small
with a gradual decrease in Ar also takes place jumpwise. This case is analogous to the phenomenon of ig-
nition and extinction under thermal combustion conditions [8, 9]. Therefore, for the flow under considera-
tion, we can speak of the phenomenon of hydrodynamic ignition and extinction. This phenomenon manifests
itself in the fact that, near the first critical point with the coordinates (Ar,, 6;), with an infinitely small in-
crease in the pressure drop there is a sharp transition from low-temperature flow conditions to high-tem-
perature conditions, i.e., ignition, while near the second critical point with the coordinates (Am_, 8_) there
is the reverse transition, i.e., extinction.

As in the theory of combustion, the critical conditions for ignition and extinction do not coincide. In
view of this, we can speak of the hysteresis character of the phenomenon. Hysteresis flow conditions and
critical conditions are possible, as can be seen from Fig. 1, with Ar > 5.65. In the case of critical values
of the parameters Am = 5.65 and Bx = 60, the hysteresis effect vanishes, i.e., the points of ignition and ex-
tinction come together into a single point. If Am< 5.65, then with a change in the heat-transfer coefficient
B, the steady-state temperature varies monotonically and we can speak of a process without a crisis.

The phenomenon described above applies to the case where the pressure drop An =const is given as
a starting parameter. With a given mass flow rate w = const, only one set of steady-state conditions is pos-
sible and, with a gradual increase in the value of w, there is a smooth increase in the steady-state heating
of the liquid. This can be seen from Fig. 2, which shows the dependence of the relative temperature 6,/6y"
(65° is the adiabatic temperature) on In o (curves 1, 2, 3, 4, 5, 6, 7 correspond to the values B =1, 10, 30,
60, 100, 250, 500).

The above laws are illustrated on Fig. 3, which shows the dependence Ar~In  with different values
of the parameter B = 0, 10, 60, 100, 250, 500 (curves 1-6). With any given values of B, a given mass flow
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rate corresponds to a single steady-state value of A, while with sufficiently large values of B, a given
pressure drop in the interval Aw_ < A7 < A7, corresponds to three values of the steady-state mass flow rate:
a low value to a small value of the mass flow rate, a high value to a large value of the mass flow rate, while
a moderate value represents unstable conditions. With a gradual change in /27, the transition from small
values of the mass flow rate to large values and back is sharp.

3. Let us make an analytical investigation of the above-described phenomenon. For this purpose we
use a zero-dimensional method, which has proved [ruitful for the description of the gualitative and quanti-
tative aspects of the phenomena of ignition and extinction in the theory of combustion [13], as well as for
the description of hystercsis effects for the simplest cases of magnetogasdynamic flows {11, 12]. From a
physical point of view, this method corresponds to a transition from a one-dimensional model of ideal dis-
placement to a model of ideal mixing.

In place of the temperature distribution along the length of the tube 6(¢), we introduce some mean value
of the temperature 6 (here and in what follows no special notation is used for the mean temperature). Effect-
ing a finite-difference transition d6/d¢~ 8, we obtain the following zero-dimensional representation of Egs.
(1.15):

®) = 0% — BO, Az = oe?® 3.1)

For flow conditions with a given pressure drop Ar = const, eliminating «:from Eg. (3.1), we obtain

Anle® = An%® — BO (3.2)
Denoting
7 (8) = An?%® (1 — 6/ An), q,(8) = BO (3.3)

Steady-state values of 6 correspond to intersection of the curve q(6) and the straight line gy(6). As
can be seen from Fig. 4a, b, ¢, depending on the value of the parameters /.7 and B, a different character of
the intersection of qq(6) and gy(6) is possible: 1) with A7< A7y (the value of Ams will be found below), con-
tact between q;(6) and qy(0) is impossible and the solution is unique for any given values of B, and flow con-
ditions without a crisis exist (Fig. 4a); 2) with Am = A7s, contact between qq(6) and gy(9) is possible at a sin-
gle point (Fig. 4b); 3) with ~Ax > Ay, depending on the parameter B (the arrow of Fig. 4c indicates a direction
toward the side of a decrease in B), there can be either one point of intersection on the high-temperature
branch (straight line 1) and on the low-temperature branch (straight line 5), or three points of intersection
(straight line 3).

An investigation of stability analogous to that carried out for the problem of thermal explosion [13]
shows that, out of the three possible steady-~-state sets of conditions, only the high-temperature and the low-
temperature are stable while the intermediate is unstable. The case of three points of intersection cor-
responds to a hysteresis character of the process.

The special qualitative characteristics of the change in the steady-state temperature with a variation
of the parameters B and A7, noted in section 2, are retained also in the simplified zero-dimensional con-
sideration. Let us pass on to a guantitative comparison. Figure 5 gives temperature curves 1 and 2 for B=
30 and B = 100, obtained by calculation using the starting integrodifferential system (1.15), and curves 1'
and 2' for these same values of B, obtained by an approximate calculation using a zero-dimensional scheme
for the transcendental Eq. (3.2). The corresponding curves obtained by the two methods practically coincide
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with small values of Ar right up to the critical point of ignition.

The divergence between them is considerable near the critical point
of extinction. An analogous character of the agreement between the
calculated characteristics, using the zero~-dimensional method, was
obtained in [12].

We obtain analytical relationships for finding the critical con-
ditions of hydrodynamic thermal ignition and extinction. It can be
seen from Fig. 4c that these conditions correspond to the points of
contact between q;(6) and qy(8) (straight lines 2 and 4), i.e., to the
Fig. 5 points (Amy, 84) and (An_, 6_). To determine them we have the sys-

tem of equations
gy =0y, An?® (1 —0/An)= B0
dg,/d® = dg,/d8, An*® (1 —0/An~=1/An) = B (3.4)

Substituting B from the first equation into the second, we obtain the quadratic equation

92 — Anb 4 An == 0 (3.5)
having the following roots;
0="1Ax(4 T VT—%/An) (3.6)

Here the minus sign corresponds to § = 4,4, i.e., to the critical ignition temperature, and the plus sign
to 8 = 0_, i.e., to the critical extinction temperature. It follows from expression (3.6) that the phenomena of
ignition and extinction are possible only with Ax >Awy =4. Substituting Eq. (3.6) into the second equation of
system (3.4), we obtain the critical dependences By = fi(An) and B. = fy(Anm).

Diagrams of the critical dependences of the heat-transfer coefficients B;, B_ and the temperatures
64, 6. on the pressure drop Aw are shown in Fig. 6a, b. The solid lines correspond to an exact solution [in
accordance with Eq. (1.15)], and the broken lines to an approximate solution (using the zero-dimensional
method). As can be seen from Fig. 6, the whole region is divided into the hysteresis region 1 (in which
critical ignition and extinction conditions are possible), and the region without a crisis 2. The hatched re-
gion corresponds to the divergence between the exact and approximate solutions. The common point of the
curves corresponds to coincidence of the critical ignition and extinction conditions. For this case, from
formulas (3.6), (3.4), and (3.1), we have

Amy =4, ©0,=2, ©,=B,=4>=~30 3-7)

From the calculations of the steady-state temperature (IFig. 5) and the critical parameters (Fig. 6) it
can be seen that the zero-dimensional relationships introduced not only reflect correctly the qualitative
side of the phenomenon of hydrodynamic thermal ignition and extinction, but also permit simplified calcula-
tional evaluations.

We use relationships (3.7) for a calculation using the example of dimensional critical parameters cor-
responding to coincidence of the critical ignition and extinction conditions. As a model liquid we take cas-
tor oil, for which ¢ = 0.51 cal/(g - deg), p = 0.964 g/cm?, k = 0.085 deg™?, if T< (9-40°C) [2]. Let T; =9°, R =

a § b
2
o1& 5
i 1 8- 1
£ 4 P
& 2 ,9.;

2y 7 2 ax . 4 s 7 ax

ing
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® ll J —— 0.1 cm, [ =20 cm. To these values, from Eq. (3.7), there correspond
LN

| AT« =23.5° C, Ap~1000 atm, Q« = 375 cm®/sec, o, = 1.47 cal/(cm?-

2N T ] sec - deg), Re = 150. Thus, here there are observed the conditions for
: \A\._ laminar flow and for a limited character of the range within which the

g"_ TN I IR BT dependence of the viscosity on the temperature is valid. The critical
T ! ! value of Apx can be decreased by preliminary heating of the liquid, so
0.3, ‘;' w20 Jy!j 4}4 7 that the inlet temperature T(z =0) will be greater than the temperature

. of the surrounding medium T,.
Fig. 7
4. Arn analysis of the limiting case of an "infinitely long" tube
(B— «) is of interest. In this case Ar—=,d6(1)/d¢ —~ 0. The equations describing the process are trans-
formed to the form

Qf —0 =0, Q=An*/B 4.1)

In place of the two parameters A7 and B determining the thermal flow conditions, for a tube of infi-
nite length there figures the single parameter Q. Physically, the introduction of @ means that in place of
the pressure drop Ap, the pressure head b = A%/l must be considered as a parameter. This was done in [3].

The theory of Eq. (4.1) is known in the theory of thermal explosion of N. N. Semenov [16, 9}, from
which it follows that

Q, =1/¢ @.2)

For a tube of infinite length the phenomenon of extinction vanishes and there are no high-temperature
steady-state conditions. In this case, we can speak of the phenomenon of a hydrodynamic thermal explosion
[31.

On Fig. 7 the results of calculations of critical ignition conditions for tubes of different length are
represented in the form of the dependence Q« (B). The divergence between the curve €, (B) and the straight
line Q. = 1/e is an cffect of the finite dimensions of the tube. This effect is small right up to a value of B=
B« (the greatest divergence is ~30%). The existence of B, and its value are, in principle, connected with
the bounded length of the tube (or with the residence time of the liquid in the tube).

In {3] there is a description of the phenomenon of a hydrodynamic thermal explosion with the flow of
a liquid in an infinite cylindrical tube with a thermostatted wall, i.e., in the case where the temperature dis-
tribution over the cross section of the tube is considerable. For this case, taking account of the Reynolds
dependence of the viscosity on the temperature (1.6), in accordance with [3], the critical conditions for a
thermal explosion can be written in the form

kbR416hu (Tg) = 2 4.3)

where A is the coefficient of thermal conductivity of the liquid; u{T) is the viscosity with T = T u(T) = up)-
In the present work an analogous solution to Eq. (4.2) was obtained for the case where there is no tempera-
ture distribution over the c¢ross section of the tube; it can be represented in the form

kb2 R® [ 16apu, = 1 /¢ @.4)
A comparison between Egs. (¢.3) and (4.4) permits determining the effective heat-transfer coefficient

for tubes with a thermostatted wall
a =2/ R 4.5)

This value is twice as great as the analogous value for the case of a chemical thermal cxplosion [9].
This is connected with the fact that, with a2 hydrodynamic thermal explosion, the maximum of the rate of
heat evolution is located near the surface while with a chemical thermal explosion it is at the center of
the tube [3].

The authors are grateful to L. A. Vulis for his invaluable evaluation of the work and to N. I. Peregu-
dov for setting up programs for computer calculations.
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